Home >> Publications >> Full List >> Content

Molding 2D Exciton Flux toward Room Temperature Excitonic Devices

Pengfei Qi,* Yuchen Dai, Yang Luo, Guangyi Tao, Wenqi Qian, Zeliang Zhang, Zhi Zhang, Tian Hao Zhang, Lie Lin, Weiwei Liu,* and Zheyu Fang*


Abstract:Devices operating with excitons have promising prospects for overcoming the dilemma of response time and integration in current generation of elec-tron- or/and photon-based elements and devices. In combination with the advantages of emerging twistronics and valleytronics, the atomically thin transition metal dichalcogenide semiconductors open up new opportunities for pursuing practical excitonic devices, where the strong exciton binding energy enables operating exciton at room temperature. The essential and foremost step toward exciton devices is the control of spatiotemporal exciton flux, which is density-dependent and affected by the complex many-body interactions. It can be effectively controlled by the strain, electric field, electron-doping, and local dielectric environment. Intriguingly, exotic phenomena such as exciton condensation, electron-hole liquid, exciton Hall effects, and exciton halo effects can be occurred in 2D exciton system, providing new possibilities for excitonic devices. Up to now, the proof-of-principle of room temperature exciton devices, including excitonic switching and transistor, exciton guides, and excitonic nanolaser, have been realized. Here the authors review the recent advances in molding 2D exciton flux from basic principle, manipulation, exotic phenomena to promising applications and discuss the opportunities and challenges in pushing the frontiers of room temperature excitonic devices.


Advanced Materials Technologies 15 March 2022  Adv Materials Technologies - 2022 - Qi.pdf